Перевод: со всех языков на английский

с английского на все языки

chief process engineer

  • 1 główny technolog

    • chief process engineer

    Słownik polsko-angielski dla inżynierów > główny technolog

  • 2 главный технолог

    1) Engineering: production manager
    2) Automation: manufacturing (engineering) manager
    3) Chemical weapons: Chief Technologist
    5) HR. Senior Principal Manufacturing Engineer

    Универсальный русско-английский словарь > главный технолог

  • 3 служба главного технолога

    Универсальный русско-английский словарь > служба главного технолога

  • 4 Taylor, Frederick Winslow

    [br]
    b. 20 March 1856 Germantown, Pennsylvania, USA
    d. 21 March 1915 Philadelphia, Pennsylvania, USA
    [br]
    American mechanical engineer and pioneer of scientific management.
    [br]
    Frederick W.Taylor received his early education from his mother, followed by some years of schooling in France and Germany. Then in 1872 he entered Phillips Exeter Academy, New Hampshire, to prepare for Harvard Law School, as it was intended that he should follow his father's profession. However, in 1874 he had to abandon his studies because of poor eyesight, and he began an apprenticeship at a pump-manufacturing works in Philadelphia learning the trades of pattern-maker and machinist. On its completion in 1878 he joined the Midvale Steel Company, at first as a labourer but then as Shop Clerk and Foreman, finally becoming Chief Engineer in 1884. At the same time he was able to resume study in the evenings at the Stevens Institute of Technology, and in 1883 he obtained the degree of Mechanical Engineer (ME). He also found time to take part in amateur sport and in 1881 he won the tennis doubles championship of the United States.
    It was while with the Midvale Steel Company that Taylor began the systematic study of workshop management, and the application of his techniques produced significant increases in the company's output and productivity. In 1890 he became Manager of a company operating large paper mills in Maine and Wisconsin, until 1893 when he set up on his own account as a consulting engineer specializing in management organization. In 1898 he was retained exclusively by the Bethlehem Steel Company, and there continued his work on the metal-cutting process that he had started at Midvale. In collaboration with J.Maunsel White (1856–1912) he developed high-speed tool steels and their heat treatment which increased cutting capacity by up to 300 per cent. He resigned from the Bethlehem Steel Company in 1901 and devoted the remainder of his life to expounding the principles of scientific management which became known as "Taylorism". The Society to Promote the Science of Management was established in 1911, renamed the Taylor Society after his death. He was an active member of the American Society of Mechanical Engineers and was its President in 1906; his presidential address "On the Art of Cutting Metals" was reprinted in book form.
    [br]
    Principal Honours and Distinctions
    Paris Exposition Gold Medal 1900. Franklin Institute Elliott Cresson Gold Medal 1900. President, American Society of Mechanical Engineers 1906. Hon. ScD, University of Pennsylvania 1906. Hon. LLD, Hobart College 1912.
    Bibliography
    F.W.Taylor was the author of about 100 patents, several papers to the American Society of Mechanical Engineers, On the Art of Cutting Metals (1907, New York) and The Principles of Scientific Management (1911, New York) and, with S.E.Thompson, 1905 A Treatise on Concrete, New York, and Concrete Costs, 1912, New York.
    Further Reading
    The standard biography is Frank B.Copley, 1923, Frederick W.Taylor, Father of Scientific Management, New York (reprinted 1969, New York) and there have been numerous commentaries on his work: see, for example, Daniel Nelson, 1980, Frederick W.Taylor and the Rise of Scientific Management, Madison, Wis.
    RTS

    Biographical history of technology > Taylor, Frederick Winslow

  • 5 Wöhler, August

    SUBJECT AREA: Metallurgy
    [br]
    b. 22 June 1819 Soltau, Germany
    d. 21 June 1914 Hannover, Germany
    [br]
    German railway engineer who first established the fatigue fracture of metals.
    [br]
    Wöhler, the son of a schoolteacher, was born at Soltau on the Luneburg Heath and received his early education at his father's school, where his mathematical abilities soon became apparent. He completed his studies at the Technical High School, Hannover.
    In 1840 he obtained a position at the Borsig Engineering Works in Berlin and acquired there much valuable experience in railway technology. He trained as an engine driver in Belgium and in 1843 was appointed as an engineer to the first Hannoverian Railway, then being constructed between Hannover and Lehrte. In 1847 he became Chief Superintendent of rolling stock on the Lower Silesian-Brandenhurg Railway, where his technical abilities influenced the Prussian Minister of Commerce to appoint him to a commission set up to investigate the reasons for the unusually high incidence of axle failures then being encountered on the railways. This was in 1852, and by 1854, when the Brandenburg line had been nationalized, Wöhler had already embarked on the long, systematic programme of mechanical testing which eventually provided him with a clear insight into the process of what is now referred to as "fatigue failure". He concentrated initially on the behaviour of machined iron and steel specimens subjected to fluctuating direct, bending and torsional stresses that were imposed by testing machines of his own design.
    Although Wöhler was not the first investigator in this area, he was the first to recognize the state of "fatigue" induced in metals by the repeated application of cycles of stress at levels well below those that would cause immediate failure. His method of plotting the fatigue stress amplitude "S" against the number of stress cycles necessary to cause failure "N" yielded the well-known S-N curve which described very precisely the susceptibility to fatigue failure of the material concerned. Engineers were thus provided with an invaluable testing technique that is still widely used in the 1990s.
    Between 1851 and 1898 Wöhler published forty-two papers in German technical journals, although the importance of his work was not initially fully appreciated in other countries. A display of some of his fracture fatigue specimens at the Paris Exposition in 1867, however, stimulated a short review of his work in Engineering in London. Four years later, in 1871, Engineering published a series of nine articles which described Wöhler's findings in considerable detail and brought them to the attention of engineers. Wöhler became a member of the newly created management board of the Imperial German Railways in 1874, an appointment that he retained until 1889. He is also remembered for his derivation in 1855 of a formula for calculating the deflections under load of lattice girders, plate girders, and other continuous beams resting on more than two supports. This "Three Moments" theorem appeared two years before Clapeyron independently advanced the same expression. Wöhler's other major contribution to bridge design was to use rollers at one end to allow for thermal expansion and contraction.
    [br]
    Bibliography
    1855, "Theorie rechteckiger eiserner Brückenbalken", Zeitschrift für Bauwesen 5:122–66. 1870, "Über die Festigkeitversuche mit Eisen und Stahl", Zeitschrift für Bauwesen 20:73– 106.
    Wöhler's experiments on the fatigue of metals were reported in Engineering (1867) 2:160; (1871) 11:199–200, 222, 243–4, 261, 299–300, 326–7, 349–50, 397, 439–41.
    Further Reading
    R.Blaum, 1918, "August Wöhler", Beiträge zur Geschichte der Technik und Industrie 8:35–55.
    ——1925, "August Wöhler", Deutsches biographisches Jahrbuch, Vol. I, Stuttgart, pp. 103–7.
    K.Pearson, 1890, "On Wöhler's experiments on alternating stress", Messeng. Math.
    20:21–37.
    J.Gilchrist, 1900, "On Wöhler's Laws", Engineer 90:203–4.
    ASD

    Biographical history of technology > Wöhler, August

  • 6 Kao, Charles Kuen

    [br]
    b. 4 November 1933 Shanghai, China
    [br]
    Chinese electrical engineer whose work on optical fibres did much to make optical communications a practical reality.
    [br]
    After the Second World War, Kao moved with his family to Hong Kong, where he went to St Joseph's College. To further his education he then moved to England, taking his "A" Levels at Woolwich Polytechnic. In 1957 he gained a BSc in electrical engineering and then joined Standard Telephones and Cables Laboratory (STL) at Harlow. Following the discovery by others in 1960 of the semiconductor laser, from 1963 Kao worked on the problems of optical communications, in particular that of achieving attenuation in optical cables low enough to make this potentially very high channel capacity form of communication a practical proposition; this problem was solved by suitable cladding of the fibres. In the process he obtained his PhD from University College, London, in 1965. From 1970 until 1974, whilst on leave from STL, he was Professor of Electronics and Department Chairman at the Chinese University of Hong Kong, then in 1982–7 he was Chief Scientist and Director of Engineering with the parent company ITT in the USA. Since 1988 he has been Vice-Chancellor of Hong Kong University.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1977. Institute of Electrical and Electronic Engineers Morris N.Liebmann Memorial Prize 1978; L.M.Ericsson Prize 1979. Institution of Electrical Engineers A.G.Bell Medal 1985; Faraday Medal 1989. American Physical Society International Prize for New Materials 1989.
    Bibliography
    1966, with G.A.Hockham, "Dielectric fibre surface waveguides for optical frequencies", Proceedings of the Institution of Electrical Engineers 113:1,151 (describes the major step in optical-fibre development).
    1982, Optical Fibre Systems. Technology, Design \& Application, New York: McGraw- Hill.
    1988, Optical Fibre, London: Peter Peregrinus.
    Further Reading
    W.B.Jones, 1988, Introduction to Optical Fibre Communications: R\&W Holt.
    KF

    Biographical history of technology > Kao, Charles Kuen

См. также в других словарях:

  • Chief mate — The Chief Mate is customarily in charge of the ship s cargo and deck crew. General Other names : Chief Officer, First Mate, First Officer. De …   Wikipedia

  • Engineer — For other uses, see Engineer (disambiguation). Engineer Conference of Engineers at the Menai Straits Preparatory to Floating one of the T …   Wikipedia

  • Chief of the Boat — Command Senior Chief badge Chief of the Boat (COB) is an enlisted sailor on board a U.S. Navy submarine or Cyclone Class Coastal Patrol Ships, who serves as the senior enlisted advisor to the commanding officer and executive officer, and assists… …   Wikipedia

  • Jack Renner (recording engineer) — Jack L. Renner (born April 13, 1935) is an American classically trained musician and recording engineer, best known as chairman, CEO and chief recording engineer of the Telarc International Corporation.Renner received a Bachelor of Science degree …   Wikipedia

  • Chartered Engineer (UK) — In the United Kingdom, a Chartered Engineer is an engineer registered with Engineering Council UK (the British regulatory body for engineers). Contemporary Chartered Engineers are master s degree qualified and have gained professional… …   Wikipedia

  • Super Chief — The Super Chief was one of the named passenger trains and the flagship of the Atchison, Topeka and Santa Fe Railway. It was often referred to as The Train of the Stars because of the many celebrities who traveled on the streamliner between… …   Wikipedia

  • Power engineer — Power Engineers are in the discipline studying the conversion of energy from one form to another.In Canada, it is required by law to have Power Engineers overseeing and operating nearly any instance in which pressure equipment is… …   Wikipedia

  • Mykola Prysyazhnyuk — Minister of Agriculture of Ukraine Incumbent Assumed office March 11, 2010 Prime Minister Mykola Azarov People s Deputy of Ukraine …   Wikipedia

  • Institution of Mechanical Engineers — Founder George Stephenson Professional title Chartered Mechanical Engineer Founded 27 January 1847 (1847 01 27) …   Wikipedia

  • First Transcontinental Railroad — This article refers to a railroad built in the United States between Omaha and Sacramento, completed in 1869. For other transcontinental railroads see transcontinental railroad. At the ceremony for the driving of the Last Spike at Promontory… …   Wikipedia

  • Wernher von Braun — Von Braun at his desk at Marshall Space Flight Center in May 1964, with models of the Saturn rocket family Born March 23, 1912(1912 03 23) Wirsitz, German Empire …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»